

Le biathlon est un sport olympique qui allie le tir à la carabine et le ski de fond. Nous nous intéresserons ici à l'épreuve dite de poursuite qui se déroule sur une distance de 12,5km. Les compétiteurs doivent effectuer tous les 2,5km une épreuve de tir sur 5 cibles. Soit 4 fois sur l'ensemble du parcours. Chaque cible ratée donne une pénalité qui correspond à une boucle de 150m supplémentaire de ski de fond, soit environ 23 secondes pour un fondeur de haut niveau.

- 1- Intéressons nous au circuit de l'épreuve de biathlon, dont l'épreuve se dispute sur une boucle à parcourir deux fois.
- **1-1 Dans le repère de l'annexe 1**, placer les points G(24; -10), H(18; -10), I(16; -8); J(16; -3), M(4; -8); Q(4; 5), R(6; 3); S(10; 3); et T(12; 5). Voir graphique
 - 1-2 Tracer alors les segments de droite GH, IJ, QR, et RS. Voir graphique
- 1-3 Tracer les arcs de cercle \widehat{WA} de centre C_1 , \widehat{DE} de centre C_3 , \widehat{HI} de centre C_5 , \widehat{LM} de centre C_7 , \widehat{MN} de centre C_8 , et \widehat{ST} de centre C_{11} . Voir graphique
- **1-4 Donner les coordonnées des points** X_1 , X_2 , X_3 , X_4 qui matérialisent le pas de tir, puis des points O et P.

X₁ (14; 3); X₂ (14; 0); X₃ (13; 0); X₄ (13; 3); O (0; -4); P (0; 5)

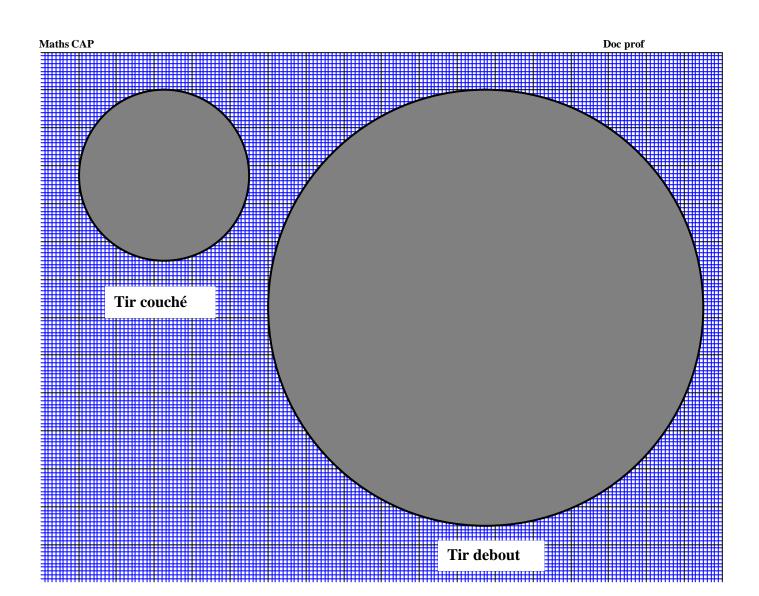
- **1-5 La distance EF** dans la réalité fait 360m.
 - 1-5-1 Mesurer EF en partant du principe que 1 carreau 1cm

EF mesure 6cm

1-5-2 Quelle est l'échelle utilisée?

1cm sur le plan représente 60m sur le terrain, soit 6000 cm. Le plan est à l'échelle 1/6000ème.

1-6 Afin de trouver la distance totale parcourue sur une boucle du circuit, remplir le tableau suivant,


Portion de circuit	Taille en cm arrondi au dixième	Distance sur le terrain en m arrondi au dixième	
AB	3 cm	180	
ВС	$\frac{1}{4}$ 2p 2 = 3,1 cm	186	
CD	5 cm	300	
DE	$\frac{1}{4}$ 2p 3 = 4,7 cm	282	
EF	6 cm	360	
FG	$\frac{1}{4}$ 2p 3 = 4,7cm	282	
GH	6 cm	360	

Maths CAP		Doc prof
НІ	$\frac{1}{4}$ 2p 2 = 3,1cm	186
IJ	5cm	300
JK	$\frac{1}{2}$ 2p 2 = 6,3cm	378
KL	5cm	300
LM	$\frac{1}{2}$ 2p 4 = 12,6cm	756
MN	$\frac{1}{2} ^2 2p ^4 = 12,6cm$ $\frac{1}{4} ^2 2p ^2 = 3,1cm$	186
NO	$\frac{1}{4}$ 2p 2 = 3,1 cm	186
ОР	9 cm	540
PQ	$\frac{1}{2}$ 2p 2 = 6,3cm	378
QR	$\sqrt{2}$ 2 = 2,8cm	168
RS	4 cm	240
ST	$\frac{1}{4}$ 2p 2 = 3,1cm	186
TU	2 cm	120
UV	$\frac{1}{4}$ 2p 2 = 3,1 cm	186
VW	1 cm	60
WA	$\frac{1}{4}$ 2p 2 = 3,1 cm	186
Total		6306 m

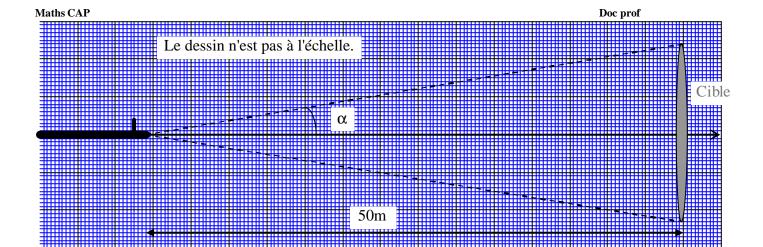
1-7 En déduire la distance totale du circuit, exprimée en mètres, puis en kilomètres.

La distance est d'environ 6306m soit \approx 6,3 km

- 2- Lors de cette épreuve, chaque skieur doit s'arrêter deux fois par tour sur un même stand de tir, au point J et au point S sur notre circuit. Lors du premier tour, il tire de 50m en position couchée sur des cibles de 45mm de diamètre. Lors du second tour, il tire de 50m en position debout sur des cibles de 115 mm de diamètre.
 - **2-1 Dessiner à l'échelle 1** les cibles pour les deux positions, couchée et debout.

2-2 Calculer la superficie en cm² des deux différentes cibles arrondies au cm².

Cible pour tir couché : $Sc = \pi (4.5)^2 = 63.6 \text{ cm}^2 \approx 64 \text{cm}^2$


Cible pour tir debout : $Sd = \pi (11.5)^2 = 415.4 \text{ cm}^2 \approx 415 \text{ cm}^2$

2-3 Combien de fois plus grande est la cible pour tir debout? Expliquer quelle pourrait en être la raison?

Soit "r" le rapport entre Sd et Sc. $r = 415/64 \approx 6.5$

La cible pour le tir debout est 6,5 fois plus grande que pour le tir couché, car la récupération cardiaque est inférieure, l'appui moins bon debout sur les skis que couché, et donc le contrôle du fusil est moins bon.

2-3 Afin de se rendre compte de la difficulté du tir, calculons l'angle α , angle maximum de débattement par rapport à l'alignement entre le canon du fusil et le centre de la cible, si on veut l'atteindre depuis la position de tir. On donnera α en degrés pour la position couchée, puis pour la position debout.

On a
$$tan\alpha = \frac{0.5 \times \emptyset_{cible}}{distance à la cible}$$

Couché
$$\tan \alpha = \frac{0.5 \times 0.045}{50} = 4.5 \times 10^{-4}$$
 soit $\alpha = 0.026^{\circ}$!
Debout $\tan \alpha = \frac{0.5 \times 0.115}{50} = 1.15 \times 10^{-3}$ soit $\alpha = 0.066^{\circ}$!

- **3- Ca y est, le départ est donné.** Comme vous allez le découvrir, on est très loin du ski de fond promenade du dimanche. Les vitesses moyennes atteintes par ces athlètes sont impressionnantes, compte tenu d'une part du dénivelé parcouru, environ 450m, et de la masse de la carabine qui est de 3,5kg.
- **3-1** Chaque arrêt au stand de tir ayant duré 1 minute, et le premier ayant mis 32'30" sans rater une cible, calculer,
 - 3-1-1 Son temps réel de ski, en minute, en seconde, puis en heure.

$$t = 32'30'' - 4 \times 1' = 28'30''$$
 soit $t = 28,5$ min ou $t = 28 \times 60 + 30 = 1710$ s soit $t = \frac{1710}{3600} = 0.475$ h

3-1-2 Sa vitesse moyenne de déplacement en m/s puis en km/h, sachant que l'on ne prendra pas en compte les arrêts.

$$v = \frac{d}{t}$$
 avec $d = 12,5$ km = 12500m et $t = 1710$ s soit $v = \frac{12500}{1710} = 7,3$ m/s ou $v = 7,3 \times 3,6 = 26,28$ km/h!!

- **3-2 Le second** qui lui est arrivé avec 12' de retard a raté 4 cibles.
 - **3-2-1 Quelle distance** a-t-il réellement parcourue?

 $d_2 = 12\,500 + 4 \times 150$ (distance en mètres à parcourir par cible ratée, voir énoncé) = 13 100m

3-2-2 Calculer sa vitesse moyenne de déplacement en ne prenant pas en compte ses arrêts.

Son temps de trajet est 1710s + 12s = 1722s

Sa vitesse est donc,
$$v = \frac{13\ 100}{1722} = 7,6 \text{m/s}$$
 soit $v = 7,6 \times 3,6 = 27,36 \text{ km/h}!!$

3-3 Que peut-on en conclure?

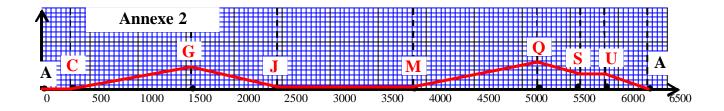
Ce n'est donc pas forcément celui qui skie le plus vite qui arrive le premier. Il faut rester suffisamment lucide pour tirer juste!

Maths CAP Doc prof

4 Intéressons nous au profil du parcours. Ce dénivelé de 450m positif n'est pas régulièrement réparti sur tout le parcours.

4-1 Afin d'avoir une idée plus précise des efforts à fournir, calculons la pente moyenne des différents tronçons du circuit, en remplissant le tableau suivant,

Tronçon	Longueur du tronçon (m)	Dénivelé (m)	Pente	
			En pourcentage (%)	Arrondi au degré (°)
AC	366	0	0	0
CG	1224	+ 215	17,6%	16°
GJ	846	- 180	21,3%	19°
JM	1434	0	0	0
MQ	1290	+ 235	18,2%	16°
QS	408	-120	29,4%	26°
SU	306	0	0	0
UA	432	-150	34,7%	31°


4-2 En consultant le tableau, calculer la longueur totale des montés.

$$L_{mont\acute{e}s} = 1224 + 1290 = 2514m$$

4-3 Quelle est la pente moyenne des montés sur le circuit, en pourcentage puis en degrés?

$$P_{mont\acute{e}s} = \frac{450}{2514} = 17,9\%$$
 soit $P_{mont\acute{e}s} = \frac{450}{2514} \times 90 \approx 16^{\circ}$

4-4 En vous aidant du tableau et d'un rapporteur, tracer le profil du circuit sur le graphique suivant,

Domaine	Compétence	Séquence biathlon	
	Effectuer un calcul isolé		
	Convertir une mesure (décimal ↔ sexagésimal)		
	Ordonner des nombres décimaux		
	Calculer un carré, un cube		
Calcul numérique	Passer d'un résultat calculatrice à la notation scientifique		
	Déterminer une valeur arrondie à 10 ⁿ		
	Déterminer exacte ou arrondie d'une rac ine carrée		
	Utiliser l'écriture fractionnaire d'un nombre		
	Calculer la valeur numérique d'une expression littérale		
	Lire un tableau simple ou à double entrée		
Repérage	Utiliser une graduation		
Keperage	Utiliser un repère du plan		
	Placer des points à partir d'un tableau		
	Traiter un problème de proportionnalité		
Duonautiannalitá	Traiter un problème de pourcentage		
Proportionnalité	Vérifier qu'une situation est du type linéaire		
	Pour une situation linéaire, passer d'une forme à une autre		
1er 1	Résoudre une équation du type $a x + b = c$		
1 ^{er} degré	Résoudre un problème du premier degré		
	Identifier le caractère étudié et sa nature		
	Lire des données (tableau ou graphique)		
St. 4* 4*	Déterminer le maximum, le minimum d'une série statistique		
Statistique	Calculer des fréquences		
	Tracer un diagramme en bâtons ou à secteurs		
	Calculer la moyenne d'une série statistique		
	Construire un segment de même longueur qu'un segment donné		
	Tracer une droite parallèle passant par un point donné		
	Tracer une droite perpendiculaire passant par un point donné		
	Déterminer la mesure d'un angle		
	Construire un angle		
	Construire une bissectrice, une médiatrice		
	Construire l'image d'une figure par symétrie		
	Identifier le parallélisme de deux droites		
Géométrie plane	Identifier la perpendicularité de deux droites		
Paralle Paralle	Identifier un axe de symétrie		
	Identifier un centre de symétrie		
	Identifier un polygone usuel		
	Tracer un triangle, un carré, un rectangle		
	Tracer un cercle selon certains éléments donnés		
	Convertir une unité de longueur, d'aire		
	Mesurer la longueur d'un segment		
	Calculer un périmètre, une aire d'une figure usuelle		
	Identifier un solide usuel		
	Convertir des unités d'aire, de volume		
Géométrie dans l'espace	Calculer l'aire et le volume d'un solide usuel		
	Calculer une longueur dans un triangle rectangle (Pythagore)		
Propriétés de Pythagore	Identifier un triangle rectangle (réciproque de Pythagore)		
et de Thalès	Calculer la longueur d'un segment (Propriété de Thalès)		
	Agrandir ou réduire une figure (Propriété de Thalès)		
Relations	Donner la valeur d'un cosinus, d'un sinus, d'une tangente		
trigonométriques dans le			
triangle rectangle	Déterminer dans un triangle rectangle la mesure d'un angle		
a migic recalligit	Déterminer dans un triangle rectangle la longueur d'un côté		
	Dotorminor dans art triangle rectargle la longueur à un cole	l	

Remarque : il est aisément possible d'aborder d'autres compétences en s'écartant un tout petit peu de l'énoncé principal.